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A new exactly solvable case of an O(n)-model on a 
hexagonal lattice 

N Yu Reshetikhint 
LOMI, Fontanka 12,  Leningrad 19011, USSR 

Received 30 May 1989, in final form 1 December 1989 

Abstract. A new solvable case of O(n)-model on a hexagonal lattice is presented. It is 
shownthat the model hasaphase transition at n = 2.This phase transition can beinterpreted 
as phase transition between percolating and non-percolating phases. 

1. Introduction 

Lately, we have observed an upsurge of interest in the O(n)-model of statistical physics 
11-41. The fluctuating parameters of the model are n-dimensional vectors with fixed 
norm s2=  n. With each vertex of a hexagonal lattice we associate such a parameter. 
The partition function is defined as follows: 

Here T i s  the temperature, (ij) are the neighbouring vertices and the periodic boundary 
conditions are provided. 

The high-temperature expansion of this partition function is defined by the partition 
function of the loop model: 

Here the sum runs over all coverings of the lattice 2 by closed non-intersecting and 
non-self-intersecting contours (we will call such coverings loop coverings); L ( C )  is 
the total length of all the loops, N ( C )  is the number of loops. The partition function 
(1) can be analytically continued to non-integer values of n. 

Nienhuis [I] found that if 

n = 2-(2-  P)* (3) 
model (2) is equivalent to the Potts model [5] on a triangular lattice: 

J withe =O,u=l ,  ..., n. 
As was shown by Baxter [5], model (2) on line (3) is solved by the Bethe ansatz 

method. In the appendix we demonstrate that this model is also equivalent to a known 
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integrable lattice model [6,71 on a square lattice connected with the affine Lie algebra 
Aiz1. 

In the present work a new integrable case of model (2) is found. It is shown that 
this model at T=O is equivalent to the known integrable model connected with the 
affine Lie algebra AY). In this case, partition function (2) becomes 

z,,,,(o, n ) = x  n N ( ‘ )  ( 5 )  c 
where e are the dense loop coverings of the lattice. In such coverings, each vertex of 
the lattice lies on some loop. 

This model can be considered as a model of percolation (see, for example, [SI). 
Indeed, coverings giving a maximal contribution to a partition function (1) for large 
n contain an infinite number of loops (at No = 00). These configurations correspond 
to the absence of percolations (for example along loops). As n -f 0, typical configur- 
ations contain a finite number of loops (at N o =  a). Of course, it is natural to interpret 
these configurations as percolations (for example along loops). One can suppose that 
there exists a phase transition in this model at some finite n = n, dividing the percolating 
phase from the non-percolating one. As we shall show, n, = 2. 

One can give another interpretation of model (1) by comparing it with the loop 
soup model [4] describing the RVB state in high-temperature superconductivity. In this 
interpretation the absence of percolation corresponds to the superconducting phase. 

In section 2 of the present work the partition function (1) is rewritten through the 
partition function of the already known exactly solvable [9,10] model on a square 
lattice. The partition function of this model in the thermodynamic limit is calculated 
in section 3. Critical behaviour of the model is discussed in section 4. 

2. Equivalence of the proposed model to the already known model on a square lattice 

Let us consider the vertex model on a square lattice of size No= N x M with three 
states and with cyclic boundary conditions. The states in this model are placed at the 
edges of the lattice. With each vertex we associate a Boltzmann weight, which depends 
on the states of the nearest edge. For example, with the vertex on figure 1 we associate 
the weight W;:. Let us choose a matrix Wjt in the following form: 

i 

j 
Figure 1. States on the lattice. 
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We shall consider ( W & )  as the matrix acting in C’OC’ (where C ’ 0 C 3  is the product 
of the space of the states on horizontal edges by the space of the states on vertical 
edges) and denote it as R ( z ,  q ) ( R ( z ,  q)ef@e,=Ei,=, W t f e k @ e , ) .  This matrix satisfies 
the Yang-Baxter equation [ I l l  

R d Z ,  q )Rn(zx ,  q ) R z ( x ,  q)=R23(x,  q)Ri , (zx,  q ) R t d z ,  4 ) .  
Here, the subscripts indicate how R ( z ,  q )  is embedded into END(C30C30C’). 

The transfer matrix of the model acts in FfN =(Cl)” and is of the form 

f ( z ) = t d R & ,  4). . . RoN(z ,  4) ) .  ( 6 )  

T h e  partition function of model (2) is equal to the trace of the Mth  power of the 
transfer matrix: 

i,.,(z,4)=trap,(f(z)M). (7) 
Let us explain now the connection between this model and the model defined by 

( 5 ) .  To this end we enumerate the diagonals of the lattice (figure 2). With each diagonal 
we associate the space of states C3. 

CI arl a.2 0.3 

Figure 2. Diagonals in the lattice 

Assot te the mace V- C’ with the a - diagonal of the lattice as is shown in 
figure 2. The matrix of Boltzmann weights can be considered as acting in V - 0  Va+, = 
C30C’  in the following way: 

&@e, = P R ( Z ,  q)e ,@e,  

where P is the permutation matrix in C3@C’(P(e ,@e , )=  e jOe,) .  
The vectors 

(123) 
(231) 

(312) 

are eigenvectors of the matrix k satisfying the eigenvalue equations 

PR(z,  ¶)e j  = -(Zq-’-zq)Zj 

p R ( 4  q ) $ k j l =  ( z q  -z -19-1)Jk j , .  

Therefore at z = 4-l the matrix @ becomes that of a projection: 

P R ( q - ’ ,  q )  = (4’- q-’) PIOEj,. 
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Let us now stretch each vertex along the diagonal as shown in figure 3. We obtain 
a hexagonal lattice, which we shall call a decorated lattice. The side diagonal on the 
square lattice corresponds to the north direction on the decorated lattice. From (8) it 
follows that partition function (4) can be rewritten as a partition function on the 
hexagonal lattice. The states on the inclined edges correspond to the vectors 4. With 
the vertices we associate the weights (4, e k O e j )  and (e iOe j ,  E k )  where i, j, k are the 
states on the neighbour edges and e: are the vectors associated with the states on the 
norizontai and verticai edges. Let us represent tne states on the edges by  arrows, as 
shown in figure 4. 

As a result we obtain that the partition function (9-9- ' ) -No2N,(9- ' ;  9 )  is equal 
to the partition function on a hexagonal lattice with the vertices of an ice type given 
in figure 5. 

Arrows form closed contours on the lattice. It is easy to see that on the lattice with 
cyciic boundary conditions ihe coniriiiuiion of each ciosed coniour io i'ne partition 
function is positive. 

+- f -  
Figure 3. Decoration 

,-E-, I-=-, I - = -  

Figure 4. Arrow configurations. 

( - 1 1 1  ( . I 14  -( . ' I& (-111 ( . ' /L  

be-' or-'  C O - '  bc-' cb - '  

Figure 5. Boltlmann weights and gauge transformation weights (a. b. e ) ,  
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Let a, b, c be arbitrary non-zero numbers. The partition function of the model on 
a decorated lattice does not change if we multiply the vertices by the factors shown 
in figure 5.  Choosing b = 9-’I3a, c = q-”’a we obtain the following expression for the 
partition function: 

(9) & ( q - l ;  9 ) =  ( q - 9 - 1 ) N o x  q ( V 6 X N R [ S l - N L ( s i i  

e 
where the sum NFS over41 dense (see the introduction) oriented loops on the hexagonal 
lattice and N R ( C )  ( N L ( C ) )  is the number of vertices at which two arrows form a right 
(left) turn. 

It is easy to see that 

where 

for n = 9 + 9- I :  

is an orientation of the ith loops =+1  (-1) for right (left) oriented loops. 
Taking the summation over orientation in (6) we obtain the partition function (1) 

(10) 

To conclude this section let us note that the boundary conditions on the decorated 

i N O ( q - l ;  q ) = ( 9 - 9 - ’ ) N ” x ( 9 + q -  I ) N(C1, 
s 

lattice are inherited from the periodic boundary conditions on the square lattice. 

3. The thermodynamic limit 

In the thermodynamic limit, as N, M + 00, the asymptotics of a partition function are 
defined by the largest eigenvalue of the transfer matrix [ 121. The eigenvalues of matrix 
( 6 )  can he found easily by means of the multicomponent algebraic Bethe ansatz method 
[IO, 131. It is convenient to use new variables instead of z, 9: z =e”, 9 = e n  for n > 2, 
z =e’“, 9 = e“ for n < 2. In (l), n = 2 corresponds to the limiting case of z = e‘”‘, 9 =e“, 
&+O. 

For n > 2 we obtain with the help of the Bethe ansatz method the following 
expression for the eigenvalues of t ( z ) :  

sinh(u -iA“’-q/2) 
sinh(u -iA‘”+ q / 2 )  

A(u, q ) ) = ( 2 s i n h ( ~ + q ) ) ~  n . 

sinh(u -iA(”+3q/2) sinh(u -iA”’) 
A ~ ~ )  sinh(u-iA‘‘’+ 7/2) 

sinh(u -iA(”+27) 

f ( 2 s i n h ~ ) ~  n . n .  sinh(u -iA(2i+ q )  

+ ( 2 ~ i n h u ) ~  n sinh(u-iA(”+v) , ’ (11) 

Here the numbers A:.’) and A j ”  are solutions of the following system of Bethe equations: 

“ I  sinh(iA;.”-’ i A k  (‘I + q )  “l sinh(iA:”-iAi2’- 7/2) 
=Lj sinh(iAj”-iAt’- q )  sinh(iA;”-iAi*)+ q j 2 )  

(12) 
“ I  sinh(iAF’-iA\:2’+q) “I sinh(iA:2’-iAY1- 7/2) 

k c j  sinh(iAY1-iA‘X2’-q) sinh(iA:2’-iA(Xl1+ q / 2 ) ’  
1=n  . n . .  
The eigenvalues of ?(z, q )  for n < 2 are obtained from ( I  I )  and (12) after the following 
change of variables: 
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Taking the logarithm of (12) we obtain the following system of transcendental 
equations: 

+(U, 9) = 2 tan-’ tan U coth - ( (3) 
Here the numbers ljk’ are integers or half-integers, 21;’’ = N +n, + n 2 -  1 (mod 2), 
2112’ = n, + n2- 1 (mod 2). 

The largest eigenvalue exists only if N = 0 (mod 3) and corresponds to the following 
numbers nk : 

2 N  N 
n 2 = -  

3 
n , = -  

3 

2 N  
j = l ,  ...,- 3 {;I) =I(=+ 1 -2j) 

2 3  

N 
j = l ,  ...,- 

3 ’  

As N + 00 the numbers A;’’ fill the real axis with densities p C k ) ( A ) :  

1 
lim = p‘”(A). 
N - m  N(Ajt’, - A j k ’ )  

Passing in (11) to the limit as N + m  and substituting (13) in the limit expression 

AmaX(q-’; q )  =(4sinh(37) sinh 9 e-7‘”3F(q-2, q-6))N(1+o(1)) (15) 

From(lS),(7)and(10) wefindtheasymptoticsofthepartitionfunction(5)for n > 2 :  

(16) 

Similar calculations give the following asymptotics of the partition function for n <2: 

for the largest eigenvalue we obtain its asymptotics in the thermodynamic limit: 

where F(z ,  q)=n,,, (1-zq”)/(l  - q “ )  for 1q1<1. 

ZN,(q+ 4-l) = (($ - q-’)q”’’F(q-2, q - 6 ) ) N o (  1 +o( I ) ) .  
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and for n = 2 

So, we calculate the free energy of model (5) explicitly. From (16) we conclude 
that there are singularities in the expression of the free energy as q + 1 +O. This means 
that n = 2 is the critical point for model ( 5 ) .  

4. Discussion of the critical behaviour 

For n > 2 there is a gap dividing the largest eigenvalue of the transfer matrix from 
low-lying eigenvalues in the thermodynamic limit [lo]. This means that for n > Z  we 
have a finite correlation length which is inversely proportional to  the gap. The correla- 
tion length 5 grows to infinity in the vicinity of the critical point n, = 2 

Therefore n = 2 is a critical point of the Kosterlitz-Thouless type. 
For n 6 2 there is no gap in the spectrum of transfer matrix in the thermodynamic 

limit and, moreover, the dispersions have a sound-type spectrum near the Fermi surface. 
This means that the leading asymptotics of correlation functions must be scale invariant, 
and can be described by a two-dimensional effective conformal field theory. The central 
charge c and the spectrum of anomalous dimensions A, of this conformal field theory 
can be found by analysing finite-size corrections [14] of the spectrum of the transfer 
matrix (3). The calculation of these finite-size corrections is similar to that given in 
[15-171. The answer is that the central charge c of the effective conformal field theory 
does not depend on y, and c = 2. The spectrum of anomalous dimensions is of the form 

where l , ,  d,, i = 1,2, and I"'P0 are integers, and  C is the Cartan matrix for S I , :  

2 -1 e-'=-( 1 2 1  ) 
c=(-1 2) 3 1 2  

Here we consider the cyclic boundary conditions on the square lattice. This is an 
unnatural boundary condition for the hexagonal lattice, which is a decorated square 
lattice. But for n > 2 the correlation length is finite and the theory in the thermodynamic 
limit does not depend on boundary conditions (if, of course, they are not orthogonal 
to the ground state of the model). For n S 2 the boundary conditions can change the 
thermodynamic limit of the partition function and of correlators. It will be interesting 

Let us compare the exact solution of model ( 5 )  with known results about the 
O(n)-model. As follows from the result given here and from Baxter's solution, n = 2  
is the point of phase transition. For n > n, the model has a finite correlation length 
and for n s n, the model is critical. This fact is in good agreement with the results 

I.. ..-.l..-.-.-..A .I.:̂ " " " ~  :.. "-a"*p- ,ia.*:l 
L" U l l U C l J L I l l U  U l l J  .,'.IC 11. 61CLLLL. '  "CLLLII. 
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[ 1-31, But from renorm-group calculations and from the results obtained for the model 
on random lattices it follows that for T Z O  the critical O(n)-model is described by 
minimal conformal theories [18-201. If these results could be continued on the line 
T = 0 they would contradict the above results. The finite-size analysis ofthe O( n)-model 
along Baxter’s line [21-231 gives C = 1 - 6 ( g  - 1)2/g where n = -2 cos ng. However, it 
cannot be continued at the line T = 0. 

5. Conclusion 

We have considered the loop model connected with the SI, R-matrix with anisotropy. 
The method of decorating the lattice in accordance with the structure of the R-matrix 
seems universal. Using this method one can associate with any R-matrix some models, 
not only on a square lattice but on some decorated lattices. It will be interesting to 
find any reasonable decorations of models connected with R-matrices corresponding 
to Kac-Moody algebras [24]. 
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Appendix 

Baxter rewrites (2) as the partition function on a hexagonal lattice with the ice-type 
vertices shown in figure 6. To compare this model with the model given in [5] let us 
transform the hexagonal lattice into the square one using summation over ‘intermediate 

I 1 1 

Figure 6. Boltzmann weights in the Baxter model. 

d 

b b 
Figure 7. Transformation of the hexagonal lattice to the square one. 
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states' (figure 7). Next, let us enumerate the states on the edges by the basic vectors 
in C3 (see figure 4 ) .  We obtain a model on the square lattice whose matrix of the vertex 
weights (figure 1) is of the form 

W ( n ) =  

0 0 0  
0 1 0  
0 0 1  

0 1 0  
0 0 T 
0 0 0  

0 0 1  
0 0 0  
0 0 0  

0 0 0  
1 0 0  
0 T O  

1 0 0  
0 T2 0 
0 0 1  

0 T O  
0 0 s-' 
0 0 0  

0 0 0  
0 0 0  
1 0 0  

0 0 0  
T O O  
o s 0  

1 0 0  
0 1 0  
0 0 0  

Here s + s-' = 4 T 2  - 2 - T4 = n. The matrix of the vertex weights in the model related 
to the Kac-Moody algebra AY', also known as the Izergin-Korepin (12) model, have 
the following non-zero elements: 

It is straightforward to verify the following relation between matrices (Al )  and (M): 

W(-i(p - p - ' ) )  = ( V 1 S @  V ) R ( P - ~ ;  p ) ( S - ' V @  V- ' )  

wheres=-p", T = - i ( p - p - ' )  is theuniformizationofcurve s- '+s=2T-2-T'and .;(A !j .=(R ; ;) y 2 - .  - 1 p .  2 

So, we have 

zlooD(-i(p - P - ' ) ,  - ( P * + P - " ) )  = Z ~ P - ~ ;  P )  

where Z , = ( A ; p )  is defined by (A2), (6) and (7). 
We proved the equivalence of the models (A2) and (2), (3) by transforming the 

hexagonal lattice into the square lattice. One can prove this equivalence in the opposite 
direction. For this one has to use the decoration of the square lattice (2) with the help 
of matrices (A2) at A = p - 4  where its rank is 3. 
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The eigenvalues of row-to-row transfer matrices of the I K  model were found in [7] 
and are of the following form: 

where the p, satisfy the equation 

(A41 
(-?)"= phP2- 1 n @hp4- pj pk + F j p 2  

ph -P i *kPk-P jp4  I*kPz+Fj' 

Substituting A =p-4 we obtain Baxler's result. The difference between approaches [SI 
and [7] is that Baxter found the coordinate eigenvectors of the transfer matrix and in 
[7] the eigenvalues were found from the system of functional equations. The algebraic 
form of eigenvectors in the I K  model was given by Tarasov [ 2 5 ] .  
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